Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 141: Nhắc lại khái niệm giá trị lượng giác của góc α, 0o ≤ α ≤ 180o.
Ta có thể mở rộng khái niệm giá trị lượng giác cho các cung và góc lượng giác.
Lời giải
Các số sinα; cosα; tanα; cotα được gọi là giá trị lượng giác của góc α, với 0o ≤ α ≤ 180o.
Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 142: Tính sin 25π/4, cos(-240o), tan(-405o).
Lời giải
sin 25π/4 = sin(6π + π/4) = sin π/4 = √2/2
cos(-240o ) = cos(-180o – 60o) = cos(-60o) = cos60o = 1/2
tan(-405o ) = tan(-360o – 45o) = -tan45o = -1
Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 143: Từ định nghĩa của sin và cos, hãy phát biểu ý nghĩa hình học của chúng.
Lời giải
sinα được biểu diễn bởi độ dài đại số của vecto (OK) trên trục Oy. Trục Oy là trục sin.
cosα được biểu diễn bởi độ dài đại số của vecto (OH) trên trục Ox. Trục Oy là trục cos.
Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 145: Từ ý nghĩa hình học của tanα và cotα hãy suy ra với mọi số nguyên k, tan(α + kπ) = tanα, cot(α + kπ) = cotα.
Lời giải
Khi β = α + kπ thì điểm cuối của góc β sẽ trùng với điểm T trên trục tan. Do đó
tan(α + kπ) = tanα.
Khi β = α + kπ thì điểm cuối của góc β sẽ trùng với điểm S trên trục cot. Do đó
cot(α + kπ) = cotα.
Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 145: Từ định nghĩa của sinα, cosα. Hãy chứng minh hằng đẳng thức đầu tiên, từ đó suy ra các hằng đẳng thức còn lại.
Lời giải
sinα = (OK) ;cosα = (OH)
Do tam giác OMK vuông tại K nên:
sin2 α + cos2 α = OK2 + OH2 = OK2 + MK2 = OM2 = 1.
Vậy sin2 α + cos2 α = 1.
Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 148: Tính cos(-11π/4), tan31π/6, sin(-1380o).
Lời giải
Bài 1 (trang 148 SGK Đại Số 10): Có cung α nào mà sinα nhận các giá trị tương ứng sau đây không ?
Lời giải
Ta có: -1 ≤ sin α ≤ 1 với mọi α ∈ R.
a) Vì -1 < –0,7 < 1 nên tồn tại cung α thỏa mãn sin α = -0,7.
Trên trục tung xác định điểm K sao cho
Từ K kẻ đường thẳng vuông góc với trục tung cắt đường tròn lượng giác tại hai điểm M1 và M2.
Khi đó với thì theo định nghĩa sin α =
b) Vì 4/3 > 1 nên không tồn tại α để sin α = 4/3.
c) Vì -√2 < -1 nên không tồn tại α để sin α = -√2.
d) Vì √5/2 > 1 nên không tồn tại α để sin α = √5/2
Kiến thức áp dụng
+ Định nghĩa sin của cung α:
Cung có sđ = α. K là hình chiếu của điểm M trên trục tung.
Khi đó ta định nghĩa
( là độ dài đại số của OK và chính là tung độ của điểm M).
+ Với mọi α ∈ R thì -1 ≤ sin α ≤ 1.
Bài 2 (trang 148 SGK Đại Số 10): Các đẳng thức sau đây có thể đồng thời xảy ra không ?
Lời giải
Kiến thức áp dụng
Bài 3 (trang 148 SGK Đại Số 10): Cho 0 < α < π/2. Xác định dấu của các giá trị lượng giác
Lời giải
Vì 0 < α < π/2 nên sin α > 0, cos α > 0, tan α > 0, cot α > 0.
Cách 1: Dựa vào mối quan hệ giữa các giá trị lượng giác của các cung có liên quan đặc biệt
a) sin (α – π) = – sin (π – α) (Áp dụng công thức sin (- α) = – sin α)
= -sin α (Áp dụng công thức sin (π – α) = sin α)
Mà sin α > 0 nên sin (α – π) < 0.
c) tan (α + π) = tan α.
Mà tan α > 0 nên tan (α + π) > 0.
Cách 2: Dựa vào biểu diễn cung trên đường tròn lượng giác:
Vì 0 < α < π/2 nên ta biểu diễn α = sđ như trên hình vẽ.
Bài 4 (trang 148 SGK Đại Số 10): Tính các giá trị lượng giác của góc α nếu
Lời giải
Kiến thức áp dụng
Bài 5 (trang 148 SGK Đại Số 10): Tính α, biết
Lời giải
a) cos α = 1 ⇔ M trùng với A hay α = k.2π, k ∈ Z.
b) cos α = -1 ⇔ M trùng với A’ hay α = π + k.2π, k ∈ Z
c) cos α = 0 ⇔ M trùng với B hoặc B’ hay α = π/2 + k.π, k ∈ Z
d) sin α = 1 ⇔ M trùng với B hay α = π/2 + k.2π, k ∈ Z
e) sin α = -1 ⇔ M trùng với B’ hay α = -π/2 + k.2π, k ∈ Z
f) sin α = 0 ⇔ M trùng với A hoặc A’ hay α = k.π, k ∈ Z