Bài 1 (trang 26 SGK Hình học 12): Các đỉnh, cạnh, mặt của một đa diện phải thỏa mãn những tính chất nào?
Lời giải:
Các đỉnh, cạnh, mặt của một đa diện phải thỏa mãn những tính chất:
– Mỗi đỉnh là đỉnh chung của ít nhất ba cạnh, ba mặt;
– Mỗi cạnh là cạnh chung của đúng hai mặt;
– Hai mặt bất kì hoặc không có điểm chung, hoặc có một đỉnh chung, hoặc có đúng một cạnh chung.
Bài 2 (trang 26 SGK Hình học 12): Tìm một hình tạo bởi các đa giác nhưng không phải là một đa diện
Lời giải:
Hình trên không phải là đa diện vì có 1 cạnh là cạnh chung của 4 mặt phẳng.
Bài 3 (trang 26 SGK Hình học 12): Thế nào là một khối đa diện lồi. Tìm ví dụ trong thực tế mô tả một khối đa diện lồi, một khối đa diện không lồi.
Lời giải:
Với hai điểm M và N thuộc khối đa diện thì mọi điểm của đoạn thẳng MN cũng thuộc khối đa diện đó. Ta gọi đó là khối đa diện lồi.
Bài 4 (trang 26 SGK Hình học 12): Cho hình lăng trụ và hình chóp có diện tích đáy và chiều cao bằng nhau. Tính tỉ số thể tích của chúng.
Lời giải:
Gọi S là diện tích đáy và h là chiều cao của hình lăng trụ và của hình chóp, ta có:
– Thể tích khối lăng trụ là: V1 = Sh
– Thể tích khối chóp là: V2= Sh/3
Vậy V1/ V2=3Sh/Sh = 3
Bài 5 (trang 26 SGK Hình học 12): Cho hình chóp tam giác O.ABC có ba cạnh OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Hãy tính đường cao OH của hình chóp.
Lời giải:
Bài 6 (trang 26 SGK Hình học 12): Cho hình chóp tam giác đều S.ABC có cạnh AB bằng a. Các cạnh bên SA, SB, SC tạo với đáy một góc 60o. Gọi D là giao của SA với mặt phẳng qua BC và vuông góc với SA.
a)Tính tỉ số thể tích giữa hai khối chóp S.DBC và S.ABC.
b)Tính thể tích của khối chóp S.DBC.
Lời giải
Bài 7 (trang 26 SGK Hình học 12): Cho hình chóp tam giác S.ABC có AB = 5a, BC = 6a, CA = 7a. Các mặt bên SAB, SBC, SCA tạo với đáy một góc 60o. Tính thể tích của khối chóp đó.
Lời giải:
Bài 8 (trang 26 SGK Hình học 12): Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với đáy và AB = a, AD=b, SA = c. Lấy các điểm B’, D’ theo thứ tự thuộc SB, SD sao cho AB’ vuông góc với SB, AD’ vuông góc với SD. Mặt phẳng (AB’D’) cắt SC tại C’. Tính thể tích khối chóp S.AB’C’D’.
Lời giải:
Bài 9 (trang 26 SGK Hình học 12): Cho hình chóp tứ giác đều S.ABCD . Đáy hình vuông cạnh a, cạnh bên tạo với đáy một góc 60o. Gọi M là trung điểm SC.Mặt phẳng đi qua AM và song song với BD, cắt SB tại E và cắt SD tại F. Tính thể tích khối chóp S.AEMF.
Lời giải:
Bài 10 (trang 27 SGK Hình học 12):
Cho hình lăng trụ đứng tam giác ABC.A’B’C’ có tất cả các cạnh đều bằng a.
a)Tính thể tích khối tứ diện A’BB’C’.
b)Mặt phẳng đi qua A’B’ và trọng tâm tam giác ABC, cắt AC và BC lần lượt tại E và F. Tính thể tích hình chóp C.A’B’FE.
Lời giải:
b)Gọi I, K lần lượt là trung điểm của AB và A’B’, G là trọng tâm của tam giác ABC.Đường thẳng qua G, song song với AB cắt AC và BC lần lượt tại E và F, đường thẳng EF chính là giao tuyến của hai mặt phẳng (GA’B’) và (ABC).
Bài 11 (trang 27 SGK Hình học 12):
Cho khối hộp ABCD.A’B’C’D’. Gọi E và F theo thứ tự là trung điểm của các cạnh BB’ và DD’. Mặt phẳng (CEF) chia khối hộp trên làm hai khối đa diện. Tính tỉ số thể tích của hai khối đa diện đó.
Lời giải:
Gọi O là tâm hình hộp và tâm của hình bình hành BB’D’D. Khi đó O là trung điểm của EF.
Ta có: A’ ∈ CO (1)
CO ⊂ mp(CEF)(2)
Mặt khác A’E // CF, A’F // CE
Nên mp(CEF) cắt hình hộp theo thiết diện là hình bình hành A’ECF.
mp(CEF) chia hình hộp ABCD.A’B’C’D’ thành hai khối đa diện (Đ) và (Đ’).
Gọi (Đ) là khối đa diện có các đỉnh là A, B, C, D, A’, E, F và (Đ’) là khối đa diện còn lại.
Phép đối xứng qua tâm O biến các đỉnh A, B, C, D, A’, E, F của đa diện (Đ) lần lượt thành các đỉnh C’, D’, A’, B’, C, F, E của khối da diện (Đ’)
Suy ra phép đối xứng qua tâm O biến (Đ) thành (Đ’), nghĩa là hai hình đa diện (Đ) và (Đ’) bằng nhau.
Vậy tỉ số thể tích của (Đ) và (Đ’) bằng 1.
Bài 12 (trang 27 SGK Hình học 12):
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M là trung điểm A’B’, N là trung điểm BC.
a)Tính thể tích khối tứ diện ADMN
b)Mặt phẳng (DMN) chia khối lập phương đã cho thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnh A, (H’) là khối đa diện còn lại. Tính tỉ số V(H)/V(H’)
Lời giải:
b)-Mặt phẳng (DMN) cắt hình lập phương theo thiết diện MEDNF trong đó ME // ND, FN //DE và chia hình lập phương thành hai khối đa diện (H) và (H’), gọi phần khối lập phương chứa A, B, A’, mặt phẳng (DMN) là (H)
-Chia (H) thành các hình chóp F.DBN, D.ABFMA’ và D.A’EM.