Chương 3 – Lý thuyết Bài 2: Tích phân

5

1. Tích phân

a) Định nghĩa: Cho hàm số f(x) liên tục trên đoạn [a; b] . Giả sử F(x) là một nguyên hàm của f(x) trên đoạn [a; b] . Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b ( hay tích phân xác định trên đoạn [a; b] của hàm f(x), kí hiệu là

Vậy ta có

Chú ý:

+ Tích phân không phụ thuộc vào chữ làm biến số trong dấu tích phân, tức là

b) Tính chất

(a < c1 < c2 < … < cn < b)

2. Phương pháp tính tích phân

a) Phương pháp biến đổi biến số

Định lí 1. Giả sử hàm số x = φ(t) có đạo hàm liên tục trên đoạn [a; b] sao cho φ(α) = a, φ(β) = b và a ≤ φ(t) ≤ b, ∀t ∈ [a; b] . Khi đó

Định lí 2. Giả sử hàm số u = u(x) có đạo hàm liên tục trên đoạn [a; b] sao cho α ≤ u(x) ≤ β, ∀x ∈ [a; b] .

Nếu f(x) = g(u(x))u'(x), ∀x ∈ [a; b] trong đó g(u) liên tục trên đoạn [α β] thì

b) Phương pháp tính tích phân từng phần

Định lí. Nếu u = u(x), v = v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a; b] , thì

Bài tập trắc nghiệm Giải tích 12 | Bài tập và Câu hỏi trắc nghiệm Giải tích 12

Comments

comments